1,803 research outputs found

    Analysis of Ionospheric foF2 by Solar Activity over the Korean Peninsula

    Get PDF
    The F2 layer is the upper sector of the ionospheric F region, and it is ~250 km above sea level. It has a high electron density and thus plays an important role in shortwave communications. The variations of the critical frequency of the F2 layer (foF2) offer clues regarding the events happening within the entire F2 layer, and foF2 analysis is essential for stable shortwave communications. This study analyzes the seasonal and annual variations of the foF2 as well as the reactions of the F2 layer height at two locations in South Korea by employing the mean and standard deviation (SD) used in previous studies. To ensure a more elaborate analysis, the median and quartiles were used for analyzing the ionosphere. We thereby compensate for the limitations of the mean and SD in developing the SD, despite the convenience of the SD for probability analysis. The application of the median and quartiles for the analysis of ionospheric data led to analysis results with greater detail. This was achieved by determining the relative SD and concurrently displaying the outliers and range of variation

    Electrical Investigation of the Oblique Hanle Effect in Ferromagnet/Oxide/Semiconductor Contacts

    Full text link
    We have investigated the electrical Hanle effect with magnetic fields applied at an oblique angle ({\theta}) to the spin direction (the oblique Hanle effect, OHE) in CoFe/MgO/semiconductor (SC) contacts by employing a three-terminal measurement scheme. The electrical oblique Hanle signals obtained in CoFe/MgO/Si and CoFe/MgO/Ge contacts show clearly different line shapes depending on the spin lifetime of the host SC. Notably, at moderate magnetic fields, the asymptotic values of the oblique Hanle signals (in both contacts) are consistently reduced by a factor of cos^2({\theta}) irrespective of the bias current and temperature. These results are in good agreement with predictions of the spin precession and relaxation model for the electrical oblique Hanle effect. At high magnetic fields where the magnetization of CoFe is significantly tilted from the film plane to the magnetic field direction, we find that the observed angular dependence of voltage signals in the CoFe/MgO/Si and CoFe/MgO/Ge contacts are well explained by the OHE, considering the misalignment angle between the external magnetic field and the magnetization of CoFe.Comment: 19 pages, 8 figure

    Development of Automatic Mold Shot Measurement and Management System for Smart Factory

    Get PDF
    Many small- and medium-sized car-part manufacturers are either still managing their mold manually or rarely managing it, and therefore, experience significant manufacturing cost and loss in time. In such a situation, a module has been developed in the present work which can count the number of mold used. Such a module is extremely important for small and medium-sized enterprises (SMEs) applying which in the production line they will be able to manage the mold life cycle and improve product quality. This is expected to have both direct and indirect effects on their business activities. The developed system uses a photo sensor, distance measurement sensor, Atmega128 MCU, tablet pc and Bluetooth communication module. The actual module developed in this study was set up on a molding equipment for test and data were collected using an existing tablet PC. The test showed that the number of shots increased when the upper mold touched the lower mold. The maximum and minimum value between the upper and lower molds could be adjusted with the automatic mold shot measurement and management system. Therefore, any molding equipment with various upper-lower gaps will be able to apply the newly developed system

    Shuttle-effect-free sodium–sulfur batteries derived from a Tröger's base polymer of intrinsic microporosity

    Get PDF
    Room-temperature sodium-sulfur (RT Na-S) batteries have recently gained attention as next-generation energy storage devices owing to their low cost, the abundance of sodium, and the high theoretical capacity of sulfur. However, the notorious shuttle effect, caused by the dissolution of intermediate polysulfides during cycling, limits the long-term performance of Na-S batteries. In this study, intrinsically microporous Tro center dot ger's base based polymer (PIM-EA-TB)-based carbon-sulfur composites are prepared for shuttle-effect-free RT Na-S batteries by utilizing the combination of physical confinement and covalent bonding in a single material. The composites demonstrate excellent electrochemical performance, including a negligible capacity fading over 350 cycles and a high coulombic efficiency of approximately greater than 99%.

    New-type of Multi-purpose Standard Radon Chamber in South Korea

    Get PDF
    Radon is an inert and a radioactive gas which is colorless, tasteless and odorless. As the radon decay proceeds, and if DNA damage continues beyond repair capacity of cells in the human body, it can cause severe health problems such as lung cancer in the long-term. There is a tendency that those countries where legal restriction on radon is strict, various studies related to radon are under way. In South Korea, radon has been regulated under recommendation level. Even though there are about 3 standard radon chambers in Korea, they have not been in an active use because of lack of demand. Also, most of them are specialized in calibration of radon detectors only. Recently, Korean government started giving some attention to radon issue and supporting radon research fields. Thus, this study was carried out to develop a new type of radon chamber for multi-purpose such as 1) radon emission rate from natural and artificial radon sources; 2) calibration of radon detectors; 3) evaluation of radon mitigation efficiency. Keywords: Radon, Radon Chamber, Indoor Air Quality, Chamber Desig

    Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils

    Get PDF
    Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn. Red pepper stalk (RPS) and biochars produced from RPS in either N2 atmosphere (RPSN) or CO2 atmosphere (RPSC) were applied at a rate of 2.5% to the two soils and incubated for 30 days. Bacterial communities of control and treated soils were characterized by sequencing 16S rRNA genes using the Illumina MiSeq sequencing. In both soils, bacterial richness increased in the amended soils, though somewhat differently between the treatments. Evenness values decreased significantly, and the final overall diversities were reduced. The neutralization of pH, reduced available concentrations of Pb or Cd, and supplementation of available carbon and surface area could be possible factors affecting the community changes. Biochar amendments caused the soil bacterial communities to become more similar than those in the not amended soils. The bacterial community structures at the phylum and genus levels showed that amendment addition might restore the normal bacterial community of soils, and cause soil bacterial communities in contaminated soils to normalize and stabilize

    Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] from bacterial cells

    Get PDF
    Conventional solvent-based methods are still the most practical approaches for recovery of polyhydroxyalkanoate (PHA) polymer from cellular biomass, even though potential alternatives exist, including chemical, mechanical, and enzymatic methods. It is still necessary, however, to avoid dangerous and environmentally unfriendly solvents (e.g., chloroform and dichloromethane) in the polymer recovery process. In the work presented here, we applied various solvent systems to recover PHA from Ralstonia eutropha and recombinant Escherichia coli cells. It was demonstrated that methyl ethyl ketone (MEK) is a promising solvent for PHA recovery from bacterial cells, particularly for the copolymer poly(hydroxybutyrate-cohydroxyvalerate) [P(HB-co-HV)], exhibiting > 90% polymer recovery. Even though MEK did not solubilize PHAs to the same extent as chloroform, it can recover a comparable amount of polymer because of its processing advantages, such as the low viscosity of the MEK/PHA solution, and the lower density of MEK as compared to cellular components. MEK was found to be the best alternative, non-halogenated solvent among examined candidates for recovery of P(HB-co-HV) from cells. The MEK treatment of PHAcontaining cells further allowed us to eliminate several costly and lengthy steps in the extraction process, such as cell lysis, centrifugation, and filtration.Korea (South). Ministry of Education (Basic Science Research Program through the National Research Foundation of Korea (NRF- 2013R1A1A2A10004690))Korea Polar Research Institute (PE14030

    Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1), and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood.</p> <p>Results</p> <p>In the present study, we show that Distal-less 2 (Dlx-2), a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS) in response to glucose deprivation (GD), one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an <it>in vitro </it>model of solid tumors. Dlx-2 short hairpin RNA (shRNA) inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH) release, indicating the important role(s) of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis.</p> <p>Conclusions</p> <p>These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.</p

    Experimental Study on the Acellular Demal Matrix Graft for the Root Coverage in Dog

    Get PDF
    Mucogingival surgery is a plastic surgical procedure designed to correct defects in the morphology, position, and dimensions of the gingiva surrounding the teeth. Many surgical techniques have been reported in mucogingival surgery. Since these procedures also include the soft tissue esthetic approach, the term periodontal plastic surgery has been proposed to be more appropriate.1 Root coverage is a procedure that falls with this definition, and it has attracted more interest than others
    corecore